

1

I am Natércia Lima

P. Porto-School of Engineering; CIETI (LABORIS)

Fostering Experimental Competences Using Complementary Resources

There is a gap in the literature considering the **impact that a simultaneous experimental resources usage** -in experimental learning- has **on students' academic results**.

Experimental Practice Remote lab Simulation Hands-on Resource Computational Results Real experimental results model results Physical contact Use the internet (interface mediated) with the Access (configuring, controlling and/or experimental monitoring devices) devices

"fluent in the language of nature and a successful designer, and for that engineering students must perform numerous experiments practice laboratory work." (Gustavsson, 2011) Blended or Hybrid

ISCD Instituto Superior de Engenharia do Porto cieti

Approach

Identify factors which affect students' learning and engagement in the electric and electronic circuits topic using the remote lab **VISIR** along with other complementary resources.

Research Questions

- In which way the use of simultaneous resources (handson, simulation and remote labs along with calculus), contributes to promote students' learning and engagement?
- Are there VISIR tasks characteristics that affect students' learning and engagement?
- Are there teacher mediation traces that can be linked to better students' learning and engagement?
- Are there students' characteristics that can be associated to students' learning and engagement?

Brief description of the **VISIR** (Virtual Instrument Systems in Reality) remote lab and the **VISIR+ Project**.

- VISIR

- Started in 1999, at the BTH, Sweden. Launched in 2004.
- It is based on virtual Instrumentation, i.e., real physical instrumentation accessible through virtual interfaces.

VISIR+ Project

Educational Modules for Electric and Electronic

Circuits Theory and Practice following an Enquiry-based Teaching and Learning Methodology supported by VISIR.

cieti

ISCD Instituto Superior de Engenharia do Porto

Relies on a **multicase** study research methodology and combines quantitative and qualitative data, that is, uses a **mixed method** approach.

Case Studies Characterization

Secondary Education

ase #	ountry	Institution	Implementation Tonic	Degree	Course Name	evel		Numb	er
С	C C						h/ w	Т	St
C1	Br	IFC C. Sombrio	Physics	Informatics	Physics	Non-EE	2	1	65
C2	Br	IFC Arananguá	Electricity	Electromechanics	Basic Electronics	EE	2	1	25
C3	Ar	IPS	Physics	Constructor/ Industrial Facilities/ Mechanics	Physics IV	Non-EE	2	4	121

Technological Education

ase #	Country	Institution	Implementation Topic	Degree	Course Name	evel	Number		
С						I	h/ w	Т	St
C4	Br	SATC	Electricity	Industrial Automation Technologies	Circuits Theory	EE	4	1	15
C5	Br	IFSC	Electricity	Technical Electronics	Electricity I	EE	6	3	164
C 6	Br	IFSC	Electricity	Technical Electronics	Electricity II	EE	5	1	8
C7	Br	ITAJAI	Electricity	Technical Electronics	Instrumentation	EE	2	1	35

Higher Education

# 936	ountry	Institution	Implementation Topic	Degree	Course Name	N [evel		Number	
	, 2		- • • • •			Ι	h/ w	Т	St
C	8 Br	UFSC	Mathematics	Computer/ Energy	Calculus IV	Non-EE	4	1	124
C	9 Br	UFSC	Mathematics	Computer/ Energy	Probabilities and Statistics	Non-EE	4	1	84
C 1	0 Br	SATC	Electronics	Mechatronic	Instrumentation I	Non-EE	2	1	45
C1	1 Br	IFSC	Electricity	Electronic	Circuits III	EE	3	1	19
Cl	2 Br	IFSC	Electricity	Electronic	Electronics II	EE	4	1	18
CI	3 Br	IFSC	Electronics	Industrial Electronics	Amplifying Structures	EE	4	1	10
C	4 Br	PUC-Rio	Electricity	Control & Automation / Electrical/ Computer	Electric Circuits Laboratory	EE	8	2	59
Cl	5 Br	PUC-Rio	Projects	Control & Automation / Electrical/ Computer	Engineering Introduction	EE	4	4	20
C	6 Br	PUC-Rio	Electricity	Chemical/ Civil/ Environmental/ Materials /Mechanical/ Production/ Petrol/ Industrial	General Electricity Laboratory	Non-EE	3	4	442
C	7 Br	UERJ	Electricity	Electrical	Electric and Magnetic Measurements	EE	4	2	50
Cl	8 Br	UCP	Electricity	Electrical	Applied Electricity	EE	4	1	15
C	9 Ar	UNR	Electronics	Electronic	Physics of Electronic Devices	EE	6	4	55
C2	Ar Ar	UNR	Electricity	Electronic	Circuits Theory	EE	6	5	91
C2	21 Ar	UNR	Electronics	Electronic	Devices & Electronic Circuits I	EE	6	7	60
C2	2 Ar	UTN FRRo	Physics	Electrical	Physics II	EE	5	3	41
C2	Ar Ar	UNSE	Electronics	Electronic/ Electrical/ Electromechanical	Electronics 2	EE	7	2	13
C2	Ar Ar	UNSE	Electronics	Electronic/ Electrical/ Electromechanical	Electronics 3	EE	7	2	8
C	Ar Ar	UNSE	Physics	Electronic	Electronics 1	EE	6	2	8
C2	6 Pt	ISEP	Physics	Systems	Applied Physics	Non-EE	6	1	199

Explores the results of **26 cases** (43 didactical implementations), involving **52 teachers** and **1794 students**.

VISIR's Implementation

Combination of experimental								
resources								
Experimental		Average # of Tasks						
Resources Combination	Cases	Hands-on	VISIR					
VISIR	$C3(1^{st}), C20$		2					
VISIR + simulation	C6, C8, C17(2 nd)		1.2					
VISIR + hands-on	C1, C2, C9, C16, C19(2 nd), C21, C26	6.1	1.6					
VISIR + simulation + hands-on	C3(2 nd), C4, C5, C7, C10, C11, C12, C13, C14, C15, C17(1 st), C18, C19(1 st , 3 rd), C22, C23, C24, C25	6.8	2.1					

VISIR and hands-on							
compination	compination						
VISIR	Usage	Cases					
Drive the bonds on	Similar experiments	C7, C18, C21, C26(1 st , 2 nd)					
Prior the hands-on	Different experiments	C3(2 nd), C5, C10, C16, C25					
After the	hands-on	C19					
Prior and after	r the hands-on	C14, C24, C26(3 rd)					
Not o	clear	C1, C2, C4, C11, C12, C13, C15, C17, C22, C23					
Contextu	alization	C8, C9					

VISIR's Implementation

Support during the

- VISIR's Implementation

VISIR's Implementation

 Courses with 2 or 3 course editions – modifications in subsequent didactical implementations:

Characteristics	Cases
Increase VISIR usage (%) in course contents	C5, C8, C9, C10, C19
Implemented other experimental resources	C3, C9
Increase task weight in final grade	C3, C26
Change tasks regime (to mandatory and/or group)	C3, C9, C19
Increase number of tasks and/or its complexity	C3, C9, C14, C26
Adjust implementation competence goal level	C10, C19

Teachers **reinforced VISIR usage** making a special effort when **planning and implementing** VISIR tasks.

Teachers' Perception

Teachers were very satisfied with VISIR (1 to 5 implementations; 3 to 85 accesses/task).

The satisfaction is intrinsically connected to the added value they consider VISIR has in their practices.

There is a correlation with the education level: $r_p = 0.404$ (p = 0.011; N = 39).

Students' Results

Good grades in VISIR (exception: C11), other tasks and lab.

42.5

- Worse results in the exam and final grade.
- Success in the course varies with education level.

Electronics students access more

- N. VISIR accesses/task shows a wide variability
- (perceived learnings) is 3 for the majority.
- F2 (satisfaction with VISIR) is 3 for the majority.
- F3 (satisfaction with support) is lower.
- The majority of students prefer remote labs. 72% in the

secondary

- Students' Results

- Their **satisfaction** with VISIR is correlated with the perceived **utility** in their **learning process**.
- VISIR usage depends more on "external factors" than their direct perception of the tool.
- VISIR has a positive impact in their academic performance:
 - Students with better academic results are more critical and demanding in their evaluation.
 - VISIR can be more appropriate for students with some difficulties.

Students' Results Positive Factors • The potential of the equipment. Access from anywhere/anytime. Better more complete understanding No fear of damaging. **Negative Factors** • Operating issues. Problems in understanding. • Poor interface/old fashionable/too simple. **External Factor** students Problems with internet.

55 Ñ and remarks positive negative 907

disadvantages 20 has VISIR

5%

Σ

ISCD Instituto Superior de Engenharia do Porto

720/1

Use of Resources & Students' Results

ISCD Instituto Superior de Engenharia do Porto Students need support – in the right proportion (tips, clues) – to keep the tasks authentic and challenging – to compel them to autonomous work.

The use of **simultaneous resources** promotes the development of **HOS**

When the tasks are mandatory, they use more VISIR. The qualitative assessment impacted their VISIR usage and their satisfaction. Students also achieve a higher perception in group tasks.

RQ1 Answer

- In which way the use of simultaneous resources (handson, simulation and remote labs along with calculus), contributes to promote students' learning and engagement?
 - Teachers support plays a crucial role.
 - The order of TL and NTL has little effect.
 - Evenly distributed balance of experimental resources.
 - Adequate for course that do not have an experimental component.

Its use, *per se*, does not seem to have a direct impact in students' grades. But there is an association between its usage and **development of HOS** and **students' satisfaction**.

RQ2 Answer

- Are there VISIR tasks characteristics that affect students' learning and engagement?
 - VISIR tasks aligned with ILO and the level of competence.
 - VISIR tasks vary in content and be diversified.
 - Assessment has a major influence.
 - Tasks that promote collaborative work are valued by

etudonte

As useful for introductory courses as for more advanced ones, as long as the **didactical implementations** are **planned accordingly** to the **type of course** and **students' background**.

RQ3 Answer

- Are there teacher mediation traces that can be linked to better students' learning and engagement?
 - When teachers were not so enthusiastic with VISIR, students learning, and engagement is affected.
 - Some mediation traces seem more dominant.

RQ4 Answer

- Are there students' characteristics that can be associated to students' learning and engagement?
 - The course level (EE/non EE) has a significant influence on students' VISIR usage. These more interested and proficient students in these topics tend to use more VISIR.
 - The more enthusiastic and reflective students are, the more they use VISIR and the better perception they have.

"Students level", per se, does not determine students' learning outcomes and engagement. Teachers should plan didactical implementations accordingly.

Presents the main **conclusions** of the work.

Experimental Resources Combination

VISIR Tasks Characteristics

Suggestions/Advices

- Prepare an introductory activity (and some support material) and give students time

- Give support to students – with minimum supervision – but providing clues and tips

- Choose the sequence of VISIR and hands-on lab (order) according to what suits you best

> - Using VISIR before hands-on is a good tactic for introductory courses and/or students first contact with EE topics: increase their confidence in labs

- Propose an evenly distributed balance of experimental resources

- Find strategies to stimulate students to use VISIR

Propose tasks:

- Perfectly aligned with the ILO(s) and type/level of competence

- Diversified in content

- Involving the comparison and the analysis of the data obtained with other experimental resources and/or theoretical calculations

- Contributing with an adequate weight to (students') final grade or mandatory

- Promoting collaborative work among students

If you use qualitative assessment include pertinent comments on students' performance

- Be particular alert to the mediation traces that seem to be more dominant (in affecting students' results): teachers' experience with VISIR, teachers give support (only) in crucial moments

- With time, experience and support by colleagues, you will be able to be more alert to this component

- Try to address most relevant mediation characteristics/ traces in (and out) your classes

Students' Characteristics: Education level, course level, students background (partially), some psychological characteristics (enthusiasm, reflection)

30

ISCD Instituto Superior de Engenharia do Porto

Advancement of Knowledge

You can find me at

• nmm@isep.ipp.pt

